Source code for km3dq_common.config_library

#! /usr/bin/env python
###############################################################################
# Definition of QAQC variable, defects, data-quality tags...
#
# Developer: Benjamin Trocme (benjamin.trocme at apc.in2p3.fr) - 2023

import tomli
import sys
import urllib.request

from km3dq_common import config_path


###############################################################################
[docs] def get_detx_caract(det, source="sftp"): """Return the number of DOMs (incl base module so far) and PMts""" try: if source == "sftp": with urllib.request.urlopen( "https://sftp.km3net.de/data/km3dq_lw_db/Common/km3dq_perf_aux.toml" ) as s_f: toml = tomli.loads(s_f.read().decode("utf-8")) else: with open( "/pbs/home/t/trocme/KM3Net/infrastructure/km3dq_lw_db/Common/km3dq_perf_aux.toml", mode="rb", ) as fconfig: toml = tomli.load(fconfig) except: print("Problem in km3dq_perf_aux.toml file") sys.exit() return toml["hardware_charact"][det]
###############################################################################
[docs] def configure_var_name(v_prop): """Description of JQAQC variables""" # QAQC variables v_prop["description"] = { "run": "Run", "livetime_s": "Livetime (s)", "nb_of_meta": "Nb of metadata", "timestampdiff": "Missing time-slices", "timestampdiff_r": ("Missing time-slices" "/Run duration"), "triggerrate": "Trigger rate(Hz)", "HRV": "High rate veto bit", "DAQ": "Fraction of data without UDP packet-loss", "WR": "White rabbit status", "FIFO": "FIFO almost full", "PMTs": "Number of active PMTs", "pmts_norm": "Fraction of active PMTs", "MEAN_Rate_Hz": "Mean rate (Hz)", "RMS_Rate_Hz": "RMS rate (Hz)", "hrv_fifo_failures": "Number of hrv/fifo failures", "duplic_timeslices": "Number of duplicated timeslices", "out_sync": "Out-of-sync", "out_usync": "Micro out-of-sync", "JDAQJTProc": "Triggered != Retriggered", "Acoustics": "Number of acoustic events", "Acoustics_per_mn": "Number of acoustic events per minute", "zero_AHRS": ("Number of DOMs without valid " "AHRS data"), "ahrs_per_mn": ("Number of AHRS event per minute " "in > 80% of DOMs"), "JDAQEvent": "Total", "JTrigger3DShower": "3D shower trigger", "JTriggerMXShower": "MX shower trigger", "JTrigger3DMuon": "3D Muon trigger ", }
###############################################################################
[docs] def configure_dataquality_tag(tag, source="sftp"): """ TOMl configuration of the data quality tags === Arguments === - tag : tag name - [string] - Ex: "default", "calibration"... === Output === - Dictionnary with all tag characteristics for all detectors """ #################################################### def single_property_process(tag, tag_parent, toml_input): output = {} for i_tag in (tag_parent, tag): if i_tag in toml_input.keys(): output = toml_input[i_tag] return output #################################################### def all_site_process(tag, tag_parent, toml_input, sites): output = {"ARCA": "", "ORCA": ""} for i_tag in (tag_parent, tag): if i_tag == "": # No tag_parent continue for i_site in sites: if i_site in toml_input[i_tag].keys(): output[i_site] = toml_input[i_tag][i_site] return output #################################################### def all_dets_process(tag, tag_parent, toml_input, det_list): # det_list: detector list output = {} for i_tag in (tag_parent, tag): if i_tag == "": # No tag_parent continue for i_site in ["ARCA", "ORCA"]: for i_det in det_list[i_site]: if i_tag in toml_input.keys(): if i_det in toml_input[i_tag]: # Detector explicitly defined output[i_det] = toml_input[i_tag][i_det] elif i_site in toml_input[i_tag]: # Use the site definition output[i_det] = toml_input[i_tag][i_site] return output #################################################### # First retrieve the general caracteristics: # status, description, dataset name, grl... try: if source == "sftp": with urllib.request.urlopen( "https://sftp.km3net.de/data/km3dq_lw_db/Common/dataquality_tag.toml" ) as s_f: # tmp = s_f.read() toml = tomli.loads(s_f.read().decode("utf-8")) else: with open(config_path("dataquality_tag"), mode="rb") as fconfig: toml = tomli.load(fconfig) dq_t = {} # The path directory is the name of the data-quality tag dq_t["dir_path"] = tag # Retrieve the general descriptions dq_t["name"] = toml["short_descr"][tag] dq_t["descr"] = toml["descr"][tag] dq_t["status"] = toml["status"][tag] # Dataset name dq_t["dataset"] = toml["dataset"][tag] dq_t["site"] = toml["site"][tag] # GRL criteria dq_t["grl"] = toml["grl"][tag] # Defect tag dq_t["def_tag"] = toml["def_tag"][tag] except: print("Problem in dataquality_tag.toml file") sys.exit() # Retrieve the dataset description from the dataset.toml file try: if source == "sftp": with urllib.request.urlopen( "https://sftp.km3net.de/data/km3dq_lw_db/Common/dataset.toml" ) as s_f: # tmp = s_f.read() toml_ds = tomli.loads(s_f.read().decode("utf-8")) else: with open(config_path("dataset"), mode="rb") as fconfig_ds: toml_ds = tomli.load(fconfig_ds) dq_t["dataset_descr"] = toml_ds["descr"][dq_t["dataset"]] dq_t["dataset_parent"] = toml_ds["parent"][dq_t["dataset"]] # Name of processing type / versions dq_t["proc"] = single_property_process( dq_t["dataset"], dq_t["dataset_parent"], toml_ds["proc"] ) # List of detectors per site - Single string dq_t["det"] = all_site_process( dq_t["dataset"], dq_t["dataset_parent"], toml_ds["site_all_dets"], dq_t["site"].split(" ") ) for i_site in dq_t["det"]: if dq_t["det"][i_site] != "": dq_t["det"][i_site] = dq_t["det"][i_site].split(" ") else: dq_t["det"][i_site] = [] # Run type - Detector dependant -> specific processing # Empty for v16 and v17 as did not contribute to the naming of file dq_t["run_type"] = all_dets_process( dq_t["dataset"], dq_t["dataset_parent"], toml_ds["run_type"], dq_t["det"] ) # QAQC version - Detector dependant -> specific processing dq_t["qaqc_vers"] = all_dets_process( dq_t["dataset"], dq_t["dataset_parent"], toml_ds["qaqc_vers"], dq_t["det"] ) # Compile the run type and qaqc version to get the filename dq_t["qaqc_name"] = {} for i_det in dq_t["run_type"]: dq_t["qaqc_name"][ i_det ] = f"{dq_t['qaqc_vers'][i_det]}_{dq_t['run_type'][i_det]}" # Run range - Detector dependant -> specific processing dq_t["run_range"] = all_dets_process( dq_t["dataset"], dq_t["dataset_parent"], toml_ds["run_range"], dq_t["det"] ) except: print("Problem in dataset configuration") sys.exit() # Retrieve the processing type/versions from the processing.toml file # Detector dependant -> specific processing defined in dataset try: if source == "sftp": with urllib.request.urlopen( "https://sftp.km3net.de/data/km3dq_lw_db/Common/processing.toml" ) as s_f: tmp = s_f.read() toml_proc = tomli.loads(tmp.decode("utf-8")) else: with open(config_path("processing"), mode="rb") as fconfig_proc: toml_proc = tomli.load(fconfig_proc) dq_t["proc_descr"] = toml_proc["descr"][dq_t["proc"]] dq_t["proc_type"] = all_dets_process( dq_t["proc"], "", toml_proc["proc_type"], dq_t["det"] ) dq_t["proc_version"] = all_dets_process( dq_t["proc"], "", toml_proc["proc_version"], dq_t["det"] ) except: sys.exit() # Retrieve the good run list definition (name and definition) # The threshold retrieval is completed in the script configure_var_thresholds try: # Open the grl.toml file to retrieve the grl description if source == "sftp": with urllib.request.urlopen( "https://sftp.km3net.de/data/km3dq_lw_db/Common/grl.toml" ) as s_f: # tmp = s_f.read() toml_grl = tomli.loads(s_f.read().decode("utf-8")) else: with open(config_path("grl"), mode="rb") as fconfig_grl: toml_grl = tomli.load(fconfig_grl) dq_t["grl_descr"] = toml_grl["descr"][dq_t["grl"]] grl_tag_parent = toml_grl["parent"][dq_t["grl"]] if grl_tag_parent == "": dq_t["grl_name"] = toml_grl["grl_name"][dq_t["grl"]] else: dq_t["grl_name"] = toml_grl["grl_name"][grl_tag_parent] for i_name in dq_t["grl_name"].keys(): if i_name in toml_grl["grl_name"][dq_t["grl"]].keys(): dq_t["grl_name"][i_name] = toml_grl["grl_name"][dq_t["grl"]][i_name] except: print("Problem in grl configuration") sys.exit() return dq_t
###############################################################################
[docs] def configure_defect(source="sftp"): """ TOMl configuration of the defects """ if source == "sftp": with urllib.request.urlopen( "https://sftp.km3net.de/data/km3dq_lw_db/Common/defect.toml" ) as s_f: # tmp = s_f.read() toml = tomli.loads(s_f.read().decode("utf-8")) else: with open(config_path("defect"), mode="rb") as fconfig: toml = tomli.load(fconfig) defect_0 = {} defect_0["descr"] = toml["descr"] defect_0["type"] = list(defect_0["descr"].keys()) defect_0["bit"] = toml["bit"] return defect_0
###############################################################################
[docs] def configure_def_var_name(v_prop): """Description of defect variables""" # QAQC variables v_prop["description"]["def_daq"] = "DAQ defects" v_prop["description"]["def_operation"] = "Operation defects" v_prop["description"]["def_data_corruption"] = "Data corruption defects" v_prop["description"]["def_calibration"] = "Calibration defects" v_prop["description"]["def_data_processing"] = "Data processing defects" v_prop["description"]["def_analysis"] = "Analysis defects" v_prop["description"]["def_high_level_analysis"] = "Neutrino analysis defects" v_prop["description"]["def_signoff"] = "Missing signoff"
###############################################################################
[docs] def configure_fact(source="sftp"): """ TOMl configuration of the facts """ if source == "sftp": with urllib.request.urlopen( "https://sftp.km3net.de/data/km3dq_lw_db/Common/fact.toml" ) as s_f: # tmp = s_f.read() toml = tomli.loads(s_f.read().decode("utf-8")) else: with open(config_path("fact"), mode="rb") as fconfig: toml = tomli.load(fconfig) fact_0 = {} fact_0["type"] = toml["type"] return fact_0
###############################################################################
[docs] def configure_det_fact(source="sftp"): """ TOMl configuration of the detector facts """ if source == "sftp": with urllib.request.urlopen( "https://sftp.km3net.de/data/km3dq_lw_db/Common/det_fact.toml" ) as s_f: # tmp = s_f.read() toml = tomli.loads(s_f.read().decode("utf-8")) else: with open(config_path("det_fact"), mode="rb") as fconfig: toml = tomli.load(fconfig) det_fact_0 = {} det_fact_0["type"] = toml["type"] det_fact_0["status"] = toml["status"] return det_fact_0
###############################################################################
[docs] def configure_var_unit(v_prop): """Description of variables""" v_prop["unit"] = { "livetime": "s", "timestampdiff": "s", "triggerrate": "Hz", "meanrate": "Hz", "rmsrate": "Hz", }
###############################################################################
[docs] def configure_var_bit(v_prop): """ Bit of variables contributing to the veto//Qscore degradation used to store in the TTree """ v_prop["bit"] = { "livetime_s": 0, "timestampdiff": 1, "timestampdiff_r": 2, "triggerrate": 3, "HRV": 4, "DAQ": 5, "WR": 6, "FIFO": 7, "PMTs": 8, "pmts_norm": 9, "MEAN_Rate_Hz": 10, "RMS_Rate_Hz": 11, "out_sync": 12, "out_usync": 13, "JDAQJTProc": 14, "Acoustics": 15, "zero_AHRS": 16, "ahrs_per_mn": 17, "nb_of_meta": 18, "hrv_fifo_failures": 19, "duplic_timeslices": 20, "def_daq": 23, "def_operation": 24, "def_data_corruption": 25, "def_calibration": 26, "def_data_processing": 27, "def_analysis": 28, "def_high_level_analysis": 29, "def_signoff": 30, }
###############################################################################
[docs] def configure_var_thresholds(v_prop, det, dqt, source="sftp"): """ Configure various variables for the analysis of the TTree derived from the JQAQC file TOMl configuration """ if source == "sftp": with urllib.request.urlopen( "https://sftp.km3net.de/data/km3dq_lw_db/Common/grl.toml" ) as s_f: toml_grl = tomli.loads(s_f.read().decode("utf-8")) with urllib.request.urlopen( "https://sftp.km3net.de/data/km3dq_lw_db/Common/km3dq_perf_aux.toml" ) as s_f: toml_perf_aux = tomli.loads(s_f.read().decode("utf-8")) else: with open(config_path("grl"), mode="rb") as fconfig: toml = tomli.load(fconfig) grl_tag_parent = toml_grl["parent"][dqt["grl"]] if grl_tag_parent == "": v_prop["veto_thresholds"] = dict(toml_grl["veto_thresholds"][dqt["grl"]]) v_prop["qsco_thresholds"] = dict(toml_grl["qsco_thresholds"][dqt["grl"]]) v_prop["good_thresholds"] = dict(toml_grl["good_thresholds"][dqt["grl"]]) v_prop["poor_thresholds"] = dict(toml_grl["poor_thresholds"][dqt["grl"]]) v_prop["bad_thresholds"] = dict(toml_grl["bad_thresholds"][dqt["grl"]]) v_prop["discard_thresholds"] = dict(toml_grl["discard_thresholds"][dqt["grl"]]) else: v_prop["veto_thresholds"] = dict(toml_grl["veto_thresholds"][grl_tag_parent]) v_prop["qsco_thresholds"] = dict(toml_grl["qsco_thresholds"][grl_tag_parent]) v_prop["good_thresholds"] = dict(toml_grl["good_thresholds"][grl_tag_parent]) v_prop["poor_thresholds"] = dict(toml_grl["poor_thresholds"][grl_tag_parent]) v_prop["bad_thresholds"] = dict(toml_grl["bad_thresholds"][grl_tag_parent]) v_prop["discard_thresholds"] = dict( toml_grl["discard_thresholds"][grl_tag_parent] ) for i_type in ( "veto_thresholds", "qsco_thresholds", "good_thresholds", "poor_thresholds", "bad_thresholds", "discard_thresholds", ): if dqt["grl"] in toml_grl[i_type].keys(): for i_modif in toml_grl[i_type][dqt["grl"]]: # If empty list, remove the thresholds defined in quasi_online dqt['grl'] if len(toml_grl[i_type][dqt["grl"]][i_modif]) == 0: v_prop[i_type].pop(i_modif) continue # Otherwise update them v_prop[i_type][i_modif] = toml_grl[i_type][dqt["grl"]][i_modif] # DUMMY detector used only by the get_grl_html_descr function # used by km3dq_perf/generatewww.py - No impact on perf if det == "DUMMY": return # Detector dependant treatment try: # Special cases impossible to handle with TOML # Variables missing in realease 16 if dqt["qaqc_vers"][det] == "v16.0.3": if "out_usync" in v_prop["veto_thresholds"]: v_prop["veto_thresholds"].pop("out_usync") if "out_usync" in v_prop["qsco_thresholds"]: v_prop["qsco_thresholds"].pop("out_usync") # Variables missing in realease 16 and 17 if dqt["qaqc_vers"][det] in ("v16.0.3", "v17.3.2"): for i_missing in [ "nb_of_meta", "hrv_fifo_failures", "duplic_timeslices", "mean_AHRS", "zero_AHRS", ]: if i_missing in v_prop["veto_thresholds"]: v_prop["veto_thresholds"].pop(i_missing) if i_missing in v_prop["qsco_thresholds"]: v_prop["qsco_thresholds"].pop(i_missing) # Display options - Not DQ tag dependant (as of today but could be changed) v_prop["basic_plots_options"] = dict( toml_perf_aux["basic_plots_options"]["quasi_online"] ) v_prop["basic_plots_y_range_display"] = dict( toml_perf_aux["basic_plots_y_range_display"]["quasi_online"] ) v_prop["basic_plots_y_range_display"]["PMTs"][1] = ( get_detx_caract(det)["pmts"] * 1.2 ) if "ORCA" in det: # Increased range for bioluminescence v_prop["basic_plots_y_range_display"]["HRV"] = [-0.1, 0.8] except KeyError: print(f"config_library.py: Missing DQ-tag information for the detector {det}") print(f"QAQC version: {dqt['qaqc_vers'].keys()}")
###############################################################################
[docs] def get_grl_html_descr(dq_tag_0): """ Returns the grl description in an html for the summary webpage The grl may depend on the detector due to missing variables. This is by-passed by passing a dummy value to the configure_var_thresholds function. In this way, no variable is discarded """ var_prop = {} configure_var_thresholds(var_prop, "DUMMY", dq_tag_0) configure_var_unit(var_prop) html_descr = {} for i_key in var_prop.keys(): # One assumes that the QQC variables arrive before the defects # in the configuration file html_descr[i_key] = "<b>QAQC variables</b><br>" defect_found = False for i_var in var_prop[i_key].keys(): # qaqc variable if any( ( isinstance(var_prop[i_key][i_var][0], int), isinstance(var_prop[i_key][i_var][0], float), ) ): if var_prop[i_key][i_var][0] == var_prop[i_key][i_var][1]: thresh = f"{var_prop[i_key][i_var][0]}" if i_var == "veto": thresh = f"{var_prop[i_key][i_var][0] == 1}" else: thresh = ( f"{var_prop[i_key][i_var][0]} &#8212 " f"{var_prop[i_key][i_var][1]}" ) if i_var in var_prop["unit"].keys(): thresh += f" {var_prop['unit'][i_var]}" html_descr[i_key] += f"{i_var}: {thresh}" # defect elif isinstance(var_prop[i_key][i_var][0], str): if defect_found is False: html_descr[i_key] += "<hr><b>Defects</b><br>" defect_found = True html_descr[i_key] += ( f"{i_var.replace('def_', '')}: " f"{var_prop[i_key][i_var][0]}" ) for j in range(1, len(var_prop[i_key][i_var])): html_descr[i_key] += f", {var_prop[i_key][i_var][j]}" html_descr[i_key] += "<br>" return html_descr