Note
Go to the end to download the full example code.
How to generate a good run list and retrieve any QAQC variables or defectΒΆ
The following example shows how to use the Calculator class.
from km3dq_common.grl_library import get_good_run_list
# The list of detectors and data quality tags are available at the
# location: https://btrocme.pages.km3net.de/km3dq_perf/all_tags.html
detector = "D0ORCA015"
dataquality_tag = "default"
# It is possible to retrieve for each run any QAQC variables or defect.
# The QAQC files are available at the location:
# https://sftp.km3net.de/data/quality/
# The assigned defects are available at the location:
# https://btrocme.pages.km3net.de/km3dq_perf/
additional_variables = ["HRV", "MEAN_Rate_Hz", "RMS_Rate_Hz"]
g = get_good_run_list(detector, dataquality_tag, additional_variables)
# Print the conditions used to derive the good run list
print(f"Veto conditions : {g['var_prop']['veto_thresholds']}")
print(f"Qscore conditions : {g['var_prop']['qsco_thresholds']}")
print(f"Good runs conditions : {g['var_prop']['good_thresholds']}")
# Print the good run list
print(f"Run list: {g['good']['run_list']}")
print(f"Livetime: {g['good']['livetime_s']}")
# Print the additional info of a random run
run_number = 15500
for i_var in additional_variables:
print(f"Run {run_number}: {i_var} = {g['add_info'][i_var][run_number]:.2f}")